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Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model
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By computer simulations, it was reported that the Bak-Tang-Wiesenfeld~BTW! model loses self-organized
criticality ~SOC! when some particles are annihilated in a toppling process in the bulk of system. We give a
rigorous proof that the BTW model loses SOC as soon as the annihilation rate becomes positive. To prove this,
a nonconservative Abelian sandpile model is defined on a square lattice, which has a parametera (>1)
representing the degree of breaking of the conservation law. This model is reduced to be the BTW model when
a51. By calculating the average number of topplings in an avalanche^T& exactly, it is shown that for any
a.1, ^T&,` even in the infinite-volume limit. The power-law divergence of^T& with an exponent 1 asa
→1 gives a scaling relation 2n(22a)51 for the critical exponentsn anda of the distribution function ofT.
The 1-1 height correlationC11(r ) is also calculated analytically and we show thatC11(r ) is bounded by an
exponential function whena.1, although C11(r );r 22d was proved by Majumdar and Dhar for the
d-dimensional BTW model. A critical exponentn11 characterizing the divergence of the correlation lengthj as
a→1 is defined asj;ua21u2n11 and our result gives an upper boundn11<1/2.

PACS number~s!: 64.60.Ht, 05.65.1b, 05.70.Jk, 05.70.Ln
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I. INTRODUCTION

The concept of self-organized criticality~SOC! is fasci-
nating since it is useful to explain the emergence of sca
and fractal behavior widely observed in nature@1,2#. The
prototype of the statistical mechanical models exhibit
SOC is the Bak-Tang-Wiesenfeld~BTW! model@3,4# whose
time-evolution rules capture some aspects of dynamics
sand grains tumbling on the slope of a sandpile. This cellu
automaton model has two processes, external driving
internal relaxation. The separation of two time scales is
plicitly required by definition of the model; an external pa
ticle should be added in the systemafter an avalanche. There
are many models exhibiting the SOC behaviors other t
the sandpile model, e.g., the Bak-Sneppen evolution mo
@5#, the forest fire model @6# and the Olami-Feder
Christensen~OFC! earthquake model@7#.

However, there has been only a phenomelogical defini
of SOC and then the conditions necessary for SOC are
unclear. One of the approaches to solve this problem i
study the robustness of SOC by generalizing the rules of
models, in which the emergence of SOC has been es
lished for their original versions. Since cellular automat
models are suitable to computer simulation rather than
analytic calculations, the study of this line has been do
mainly by numerical simulations@8–14#. As explained be-
low, here we will concentrate on the reports of compu
simulations@9,10# that showed the breaking of SOC in th
BTW model as soon as the rule is generalized so that
conservation of particle numbers is not satisfied even in t
pling apart from boundaries.

Almost all of the exactly solved models exhibiting SO
which are defined on regular lattices with short-range in
actions, may fall into only one class called the Abelian sa
pile models~ASM! of Dhar @15–24#. Although Mannaet al.
@9# and Ghaffariet al. @10# did not take care of the Abelian
property when they introduced their models, we have fou
that we can define nonconservative sandpile models sim
to those that are Abelian and then can be solved exactly
PRE 611063-651X/2000/61~2!/1183~6!/$15.00
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this paper, we generalize the BTW model to make so
particles annihilate in a toppling process, and show th
from exact calculations, if a slight annihilation exists, th
the model loses criticality. Ghaffariet al.concluded by com-
puter simulations that a level of dissipationR ~i.e., the break-
ing of conservation! as small as 1 part in 1000 is enough
destroy criticality@10#. On the other hand, Mannaet al. @9#
reported the increasing fluctuations of simulation data as
creasing the level of dissipationR, which implies the diffi-
culty of studying the system forR.0 by numerical simula-
tions. The exact solutions are very useful to clarify t
condition the SOC breaks as shown in the present paper.
analytical results support the picture for SOC that the c
served BTW models exists at the critical point of the gen
alized ~nonconserved! models @9,10,25#. Our results also
give exact values of critical exponents, a scaling relation,
a bound of a critical exponent.

The paper is organized as follows. In Sec. II, we give
precise definition of the nonconservative Abelian sandp
models. In Sec. III, the calculations of the average numbe
topplings in an avalanche and the height correlation will
given. Concluding remarks are given in Sec. IV.

II. NONCONSERVATIVE ABELIAN SANDPILE MODEL

Consider anL3L regionLL on a square lattice. To eac
site xW5(x,y)PLL , a variablez(xW )PZ15$1,2,3,•••% is as-
signed, which is the number of sand grains onxW . We define
a threshold valuezc and a configuration is stable ifz(xW )
<zc at all sites and otherwise it is unstable. An initial co
figuration is a random stable configuration, and tim
evolution rules consist of the following two rules.~i! Adding
a particle at a randomly chosen sitexW , corresponds toz(xW )
→z(xW )11, and otherz(yW )’s (yWÞxW ) are unchanged. In this
procedure, the probability of choosing one site is not nec
sarily equal. For simplicity, however, we assume that ea
site is chosen with equal probability from now on.~ii ! If any
z(xW ).zc , thenz(yW )→z(yW )2D(xW ,yW ) for all y. whereD(xW ,yW )
1183 ©2000 The American Physical Society
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1184 PRE 61TOMOKO TSUCHIYA AND MAKOTO KATORI
is the (xW ,yW ) element ofthe rule matrixD. This process rep-

resents a toppling atxW . In our sandpile model we define th
rule matrix as

D~xW ,yW !5H 4az if xW5yW

2z if uxW2yW u51

0 otherwise,

~1!

for xW ,yWPLL andD(xW ,yW )50 for xW¹LL or yW¹LL . This rule
means that at a toppling onxW , 4az particles drop fromxW and
z particles fall onto each of nearest-neighbor sites. Whea
.1(a,1), 4ua21uz particles are annihilated~created! in a
toppling. Without loss of generality, we can assumezc
54az. We impose the open boundary condition so tha
topplings occur at a corner or an edge ofLL, particles drop-
ping outside ofLL leave the system. Topplings must be co
tinued until the configuration becomes stable again, and
series of topplings is called an avalanche. After an a
lanche, return to the perturbation~i!.

In this paper, we restrict the cases that particles annihi
in a toppling (a.1). It must be noted thataz andz must be
integers, since we have assumedz(xW )PZ1. Howevera can
be chosen any rational number if one choosez so thataz is
an integer. We can then treat the cases in which the rati
particle annihilation in a toppling is very small; for exampl
a51.0001. Such cases are difficult to study by compu
simulations.

Let C be a stable configuration and define an operatoraxW

so thataxWC is the stable configuration that is reached throu
an avalanche due to a perturbation atxW . It can be seen tha
the operators$axW% are exchangeable:@axW ,ayW#50. Those
models having such property are called ASM@16#. For gen-
eral Abelian sandpile models, Dhar proved that stable c
figurations are divided in two classes,allowedandforbidden
configurations. The allowed configurations come out w
equal probability in the stationary state, although the forb
den configurations never do. It is proved that the numbe
allowed configurationsNR is generally given by

NR5detD. ~2!

The Green functionG(xW ,yW ) of the sandpile models wa
defined by Dhar as the average number of topplings atyW in
the avalanche due to a perturbation atxW , which is the solution
of the equation

(
yWPLL

G~xW ,yW !D~yW ,zW !5dxW ,zW for xWPLL ~3!

with the boundary conditionG(xW ,yW )50 if xW¹LL or yW¹LL .
Here dxW ,zW51 if xW5zW and dxW ,zW50 otherwise. The averag
number of topplings in an avalanche in the steady state^T&L
is then given as
f
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^T&L5
1

L2 (
xWPLL

(
yWPLL

G~xW ,yW !

5
1

L2 (
xWPLL

(
yWPLL

@D21#~xW ,yW !. ~4!

Consider a discrete versionD̂ r of the Laplacian operato
D̂5(m51

2 ]2/]xm
2 ,

D̂ r f ~xW !5 (
m51

2

@ f ~xW1eWm!1 f ~xW2eWm!22 f ~xW !#, ~5!

whereeW1 and eW2 are the basis vectors of the square lattic
Equation ~3!, in which xW and yW are replaced by 0W and xW ,
respectively, can be written as

@D̂ r2m2#G~xW !52dxW ,0W , ~6!

for G(xW )5G(0W ,xW )/j with m254(a21). If a.1, G(xW ) is
the analog of the massive propagator in particle phys
We find that the Green function of the two-dimensional s
tionary Klein-Gordon equation@D2m2#G2(r )52d(r ),
r 5Ax21y2, is given as G2(r )5( i /4)H0

(1)( imr ) using
the Hankel function of the second kind. SinceG2(r ) gives
the two-dimensional Yukawa potential G2(r )
.(2A2p)21e2mr /r 1/2 for r @1, Eq.~6! implies that for any
a.1 the Green function of the present sandpile mo
shows the exponential decay and the system is out of c
cality. Rigorous arguments proving this simple observat
will be given in the following sections.

III. ANALYTICAL CALCULATIONS

A. Exact calculations of ŠT‹

For obtaining^T&L by Eq. ~4!, we must calculateD21. If
we can diagonalizeD with a matrix P as L5P21DP, we
can easily obtainD21 asPL21P21. We found that the rule
matrix can be diagonalized by the Fourier transformation
xW5(x1 ,x2) to nW 5(n1 ,n2) as

P~nW ,xW !5
2

L11
sinS x1n1

L11
p D sinS x2n2

L11
p D . ~7!

Then we obtain that the diagonalized matrixL is

L~xW ,yW !52zH 2a2cosS x1

L11
p D2cosS x2

L11
p D J dxW ,yW .

~8!

Using Eqs.~7! and ~8!, G(xW ,yW ) can be written as

G~xW ,yW !5
2

z~L11!2 (
n151

L

(
n251

L

3

cosS n1x

L11
p D cosS n2y

L11
p D

2a2cosS n1

L11
p D2cosS n2

L11
p D . ~9!

Then,
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^T&L5
2

zL2~L11!2 (
n1 ,n2 ,x1 ,x2 ,y1 ,y251

L sinS n1x1

L11
p D sinS n2x2

L11
p D sinS n1y1

L11
p D sinS n2y2

L11
p D

2a2cosS n1

L11
p D2cosS n2

L11
p D

5
2

zL2~L11!2 (
n1 ,n251:n1 ,n2P$odd%

L cot2S n1p

2~L11! D cot2S n2p

2~L11! D
2a2cosS n1p

L11D2cosS n2p

L11D . ~10!
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We can take the infinite-volume limit of̂T&L and obtain

^T&5 lim
L→`

^T&L5
1

4z~a21!
,` for a.1. ~11!

Thus we can conclude the avalanche has a characteristic
scale^T& and criticality of the system is destroyed for an
a.1. It should be noted that^T&, which is the spatial sum
mation of G(xW ,yW ) as in Eq.~4!, will show a power-law di-
vergence asa→1 with an exponent 1. It is the analog of th
susceptibility and the specific heat that are the spatial s
mations of the spin-spin and the energy-energy correlat
and exhibit the divergence as the temperature goes to
critical value in the usual second-order phase transition
spin systems.

Ghaffariet al. found numerically@10# that the distribution
of T behaves likeP(T);T2a exp@2(T/T0)

b#, whereT0;(a
21)22n. Combining this assumption with the definitio
^T&5*TP(T)dT gives ^T&;(a21)22n(22a)G@(22a)/b#,
whereG(x) is the gamma function. Our result~10! gives a
scaling relation

2n~22a!51. ~12!

It is remarkable that the numerical fitting of the data repor
by Ghaffariet al. givesn.1/2 anda.1, which are consis-
tent with Eq.~12!.

B. Analytical estimation of the 1-1 height correlation

We study here the 1-1 height correlationP11(r ) by apply-
ing the method used by Majumdar and Dhar for the BT
model@17#. For preparation, we must go through theburning
algorithm @16–18# that determines whether a given stab
configuration is allowed or not. The procedure of the burn
algorithm is the following. For a given configuration, choo
a site xW at random and test whether the inequalityz(xW )
.(yWD(yW ,xW ) is satisfied or not. The right-hand quantity co
responds to the sum of numbers of particles falling intoxW in
topplings at other sitesyW . If the inequality is satisfied, then
we remove the sitexW from the lattice~the site is burned!.
Continue the test and the removing processes over all
until there is no site to be removed. At this time, if th
system becomes empty then the initial configuration is
lowed, while if there remain unburned sites on the lattice
configuration is forbidden.
me
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Consider a lattice with two separated sitesOW andOW 8 and

an allowed configurationC with z(OW )5z(OW 8)51 on it. As

shown in Fig. 1 we assume thatNW , WW , SW andEW (N8W , W8W , S8W ,

andEW 8) are the nearest-neighbor sites ofOW (OW 8). It is con-
cluded from the burning algorithm that the height of a s
whose adjacent site having height 1 must be larger thaz.
Then we can construct a configuration$C8% by reducing the

heights atNW , WW , SW , NW 8, WW 8, andSW 8 by z. It should be noted

that for any allowed configurationC with z(OW )5z(OW 8)51
we have a unique configurationC8 by this procedure and we
can make two sets of configurations$C% and $C8% that have
one-to-one correspondence to each other.

It is convenient to put asink siteout of the lattice and
connect each site in the lattice and the sink site by an a
tional bond. We interpret annihilation of particles in a to
pling as a process in which the particles fall into the sink s
through the additional bond between the toppling site and
sink site. Particles into the sink site are absorbed and ne
return to the lattice sites. In this system, in a toppling atxW ,
4az particles drop fromxW , and thenz particles fall into
every nearest-neighbor site and (a21)z particles into the
sink site. Next we remove the six bonds,OW NW , OW WW , OW SW ,
OW 8NW 8, OW 8WW 8, OW 8SW 8, and two bonds connectingOW , OW 8 and
the sink site. The remaining lattice~see Fig. 1! is denoted by
LL8 instead of the original latticeLL . Now consider our non-
conservative ASM onLL8 , with a slight modification of top-
pling rules. Since particles cannot flow along the remov
bonds, we revise the threshold values ofOW , NW , WW , SW , EW , OW 8,
NW 8, WW 8, SW 8, andEW 8 as

zc~OW !5zc~O8W !51,

FIG. 1. A latticeLL8 obtained by removing six bonds fromLL .
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zc~NW !5zc~WW !5zc~SW !

5zc~NW 8!5zc~WW 8!5zc~SW 8!54az2z,

zc~EW !5zc~EW 8!54az2~z21!. ~13!

The new rule matrixD8 can be written using a modifying
matrix B as

D85D1B, ~14!

whereB(xW ,yW )50 except for

B~OW ,OW !5124az,

B~NW ,NW !5B~WW ,WW !5B~SW ,SW !52z,

B~EW ,EW !52z11,

B~OW ,NW !5B~OW ,WW !5B~OW ,SW !

5B~NW ,OW !5B~WW ,OW !5B~SW ,OW !5z,

B~OW ,EW !5B~EW ,OW !5z21, ~15!

and for other elements obtained by replacingOW , NW , WW , SW ,
andEW in Eq. ~15! by OW 8, NW 8, WW 8, SW 8, andEW 8, respectively.
By the definitions ofLL8 andD8, the set of allowed configu
rations of this modified ASM onLL8 is equal to the set$C8%,
which is constructed from the set of allowed configuratio
$C% for the original ASM onLL as mentioned above. Thi
fact can be confirmed by demonstrating the burning al
rithm. Let xW1 ,xW2 , . . . ,xWn be the sequence of the burned sit
in the algorithm under the ruleD for C with z(OW )5z(OW 8)
51, then we see thatC8 passes the burning algorithm und
the rule D8 with the same sequence,xW1 ,xW2 , . . . ,xWn . This
one-to-one correspondence concludes that the number o
lowed configurations withz(OW )5z(OW 8)51 is equal to the
total number of allowed configurations of the ASM underD8
on LL8 .

Define P11(OW ,OW 8) to be the probability that the configu
ration with z(OW )5z(OW 8)51 appears in the stationary sta
of the nonconservative ASM with the rule matrixD. Com-
bining the equiprobability property of allowed configuratio
and Dhar’s formula~2! with the above consideration gives

P11~OW ,OW 8!5
detD8

detD
. ~16!

Substituting Eq.~14! into Eq. ~16! gives P11(OW ,OW 8)5det@ I
1GB# with an L23L2 matrix G, whereI is a unit matrix.
Since the elements ofB are zero except the rows and co
umns labeled byOW , NW , WW , SW , EW , OW 8, NW 8, WW 8, SW 8, andEW 8,
we need to calculate the determinant of only the 10310
matrix. As explained below, we can define the 10310 ma-
tricesB1 andG1 so that

P11~OW ,OW 8!5det@ I 11G1B1#, ~17!
s

-

al-

whereI 1 is the 10310 unit matrix. The elements ofB1 such
as (OW ,OW 8), (OW ,NW 8), (OW ,WW 8), and so forth are zero, and w
have

B15S B11 0

0 B118
D , ~18!

whereB11 and B118 are 535 matrices. The form ofG1 is,
accordingly,

G15S G11 G12

G12 G118
D , ~19!

whereG11, G12, andG118 are 535 matrices. Note that the
elements ofB11 andG11 (B118 andG118 ) depend only on the

location ofOW (OW 8) and are independent of the distance b
tweenOW andOW 8 although those ofG12 depend on the loca
tions of both ofOW andOW 8.

It can be seen that what we must calculate to determ
the elements ofB1 and G1 are G(PW 6seW16reW2 ,PW 86s8eW1

6r8eW2), where PW and PW 8 are OW or OW 8 and s,r,s8,r8

P$21,0,1%, whereG(xW ,yW ) is the Green function given by
Eq. ~9!. Now we fix OW at the center of the lattice„@(L
11)/2,(L11)/2#…, and OW 85OW 1xeW11yeW2 with 2L/2,x,
y,L/2. Let r 5Ax21y2 and take theL→` limit, then we
have

G̃~r ![ lim
L→`

G~OW ,OW 8!

5
1

2zp2E0

p

du1E
0

p

du2

cos~xu1!cos~yu2!

2a2cos~u1!2cos~u2!
.

~20!

Define the truncated correlation functionC11(r ) as

C11~r !5 lim
L→`

@P11~OW ,OW 8!2P1~OW !P1~OW 8!# ~21!

where P1(OW )@P1(OW 8)# is the probability that the height a
OW (OW 8) is one in the steady state. By Eq.~17! and the prop-
erties of matricesG1 and B1 explained, we can conclud
C11(r ) decays asG̃2(r ).

As shown in the Appendix, we found an upper bound
uG̃(r )u as

uG̃~r !u,const3
e2r /2ju

r
, ~22!

where

ju5
1

A2 ln$a112A2aA2a22%
. ~23!

Thus we therefore conclude thatC11(r ) decays with re-
spect tor faster thane2r /ju/r 2. This means thatC11(r ) is not
algebraic but exponential, and the upper bound of the co
lation length is given byju . Note thatju diverges asa→1.
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It should be remarked that thea51 limit of the present
ASM is the BTW model, and Majumdar and Dhar@17# es-
tablished thatC11(r );r 22d for the d-dimensional BTW
models. The power-law divergence ofju of C11(r ), ju;ua
21u21/2 for a.1, implies that the correlation lengthj of
C11(r ) will also diverge asj;ua21u2n11 as a→1 in the
nonconservative ASM. Our results~22! and~23! give an up-
per bound of the correlation length exponent asn11< 1/2 .
We note that the mean-field theory of Vespignani and Z
peri gives the height correlation length exponent as 1/2
all nonconservative sandpile models@25#.

IV. CONCLUDING REMARKS

In the present paper we have introduced a nonconse
tive Abelian sandpile model on anL3L square lattice with a
parametera.1, in which at a fraction (a21)/a particles
are annihilated in each toppling process. An exact expres
for the average number of toppling in an avalanche in
steady statêT&L is obtained for an arbitrary size of systemL
and it is shown that̂T&5 limL→`^T&L,` for anya.1. We
have also calculated the 1-1 height correlation funct
C11(r ) and proved that for anya.1 the correlation lengthj
is finite andC11(r ) decays exponentially for larger. Since
^T& andj are the temporal and spatial characteristic scale
the extension of avalanches, we can conclude that the c
cality is lost whena.1. In the limit a→1, on the other
hand, our model is reduced to be the BTW model, for wh
Dhar @16# proved^T&;L2→` asL→` and Majumdar and
Dhar @17# showedC11(r );r 24 for r @1. It is then con-
cluded that the conservation of particles in the toppling in
bulk of the system is necessary for SOC.
-
r
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e

The present exact results show that^T&;(a21)21 for
any a.1 and j<ju;ua21u21/2 for 0,a21!1. The
power-law divergence asa→1 supports the picture tha
SOC of the BTW model can be considered as a critical p
nomenon at the critical pointa51 of the present generalize
~nonconservative! Abelian sandpile model@9,10,25#.

In conclusion we should remark that it is still an ope
problem for the non-Abelian sandpile models whether or
the conservation of particles in toppling is necessary for
SOC. In the present study, we add a particle at a rando
chosen site~random drive!. Ghaffariet al. @10# claimed that
the establishment of SOC depends on how to give pertu
tion to the system as well as on the method of toppling~e.g.,
Abelian or non-Abelian!. They reported that in a nonconse
vative and non-Abelian model, which they called the Zha
model @14# but the method of toppling of which is identica
to the OFC earthquake model@7#, uniform driveis necessary
~but not sufficient! for SOC. It is noted that their study de
pends on numerical simulations and approximate renorm
ization group analysis and it is a challenging future probl
to obtain exact and/or rigorous results for non-Abelian mo
els.

APPENDIX: BOUNDS OF G̃„r …

We can immediately perform one of the two integratio
of Eq. ~20! by the formula

E
0

p cosau

A2cosu
du5p

~A2AA21AA11!a

AA11AA21
. ~A1!

ThenG̃(r ) reduces to
G̃~r !5
1

2zpE0

p

du1cosxu1

~2a2cosu12A2a2cosu1112A2a2cosu121!y

A2a2cosu111A2a2cosu121
, ~A2!
wherer 5Ax21y2.
It may be convenient to change the variableu1 for f/x,

and then divide the interval@0,xp# into x parts as follows.
We assume thatx is even,

G̃~r !5
1

2zpx (
k50

x21 E
kp

(k11)p

cosfgS f

x Ddf, ~A3!

where

g~f!5
~2a2cosf2A2a2cosf21A2a2cosf11!y

A2a2cosf21A2a2cosf11
.

~A4!

Note thatg(f) is a decreasing function off in each interval
@kp,(k11)p#. It follows that

gS 2k11

2x
p D E

kp

(k11)p

cosudu,E
kp

(k11)p

cosugS u

xDdu
,gS kp

x D E
0

(k11/2)p

cosudu

1gS k11

x
p D E

(k11/2)p

(k11)p

cosudu if k is even

~A5!

and

gS kp

x D E
0

(k11/2)p

cosudu1gS k11

x
p D E

(k11/2)p

(k11)p

cosudu

,E
kp

(k11)p

cosugS u

xDdu

,gS 2k11

2x
p D E

kp

(k11)p

cos~u!du if k is odd. ~A6!

Substituting Eqs.~A5! and ~A6! into Eq. ~A3! gives
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G̃l~r !,G̃~r !,G̃u~r !, ~A7!

with

G̃u~r !5
1

2zpx (
m50

(x22)/2 H gS 2mp

x D2gS 2m11

x
p D J ,

G̃l~r !5
1

2zpx (
m50

x/2 H gS 2mp

x D2gS 2m21

x
p D J . ~A8!

Sinceg(x) depends onx through cosx, one can expandg(x)
with respect to cosx. The summations ofg(x) are replaced
to the summations of cosl(u), l PZ. Then we arrive at

G̃u~r !,
1

2zpx

~a112A2aA2a22!y

A2aA2a22
,

,

et

ev
G̃l~r !.2
1

2zpx

~a112A2aA2a22!y

A2aA2a22
, ~A9!

where we used the following equalities:

(
m50

x/2 H cosl S 2m

x
p D2cosl S 2m11

x
p D J 5

1

2
@12~21! l #,

(
m50

(x22)/2 H cosl S 2m

x
p D2cosl S 2m21

x
p D J 5

1

2
@~21! l21#.

~A10!

Then the bounds~A7! give Eq.~22!.
s.
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