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Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model
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By computer simulations, it was reported that the Bak-Tang-Wiese(B3tV) model loses self-organized
criticality (SOQ when some particles are annihilated in a toppling process in the bulk of system. We give a
rigorous proof that the BTW model loses SOC as soon as the annihilation rate becomes positive. To prove this,
a nonconservative Abelian sandpile model is defined on a square lattice, which has a parariett)
representing the degree of breaking of the conservation law. This model is reduced to be the BTW model when
a=1. By calculating the average number of topplings in an avalag€heexactly, it is shown that for any
a>1, (T)< even in the infinite-volume limit. The power-law divergence(®) with an exponent 1 a&

—1 gives a scaling relationif2—a)=1 for the critical exponents anda of the distribution function ofl.
The 1-1 height correlatio4(r) is also calculated analytically and we show tat(r) is bounded by an
exponential function wherw>1, althoughCy,(r)~r 24 was proved by Majumdar and Dhar for the
d-dimensional BTW model. A critical exponent, characterizing the divergence of the correlation lerggés
a—1 is defined ag~|a— 1|~ *11 and our result gives an upper boung<1/2.

PACS numbes): 64.60.Ht, 05.65t+b, 05.70.Jk, 05.70.Ln

[. INTRODUCTION this paper, we generalize the BTW model to make some
particles annihilate in a toppling process, and show that,
The concept of self-organized criticali@8OQ is fasci- from exact calculations, if a slight annihilation exists, then
nating since it is useful to explain the emergence of scalinghe model loses criticality. Ghaffaet al. concluded by com-
and fractal behavior widely observed in natife2]. The _puter simulation§ that a level ofdissipqtia{i.e.,}he break-
prototype of the statistical mechanical models exhibitinging of conservationas small as 1 part in 1000 is enough to
SOC is the Bak-Tang-WiesenfelBTW) model[3,4] whose ~ destroy criticality[10]. On the other hand, Manret al. [9]
time-evolution rules capture some aspects of dynamics dfeported the increasing fluctuations of simulation data as de-
sand grains tumbling on the slope of a sandpile. This cellulaf€asing the level of dissipatidR, which implies the diffi-
automaton model has two processes, external driving angulty of studying the system fdR=0 by numerical simula-
internal relaxation. The separation of two time scales is imiions. The exact solutions are very useful to clarify the
plicitly required by definition of the model; an external par- condition the SOC breaks as shown in the present paper. Our
ticle should be added in the systatfter an avalanche. There analytical results support the picture for SOC that the con-
are many models exhibiting the SOC behaviors other thaﬁgrved BTW models exists at the critical point of the gener-
the sandpile model, e.g., the Bak-Sneppen evolution modéilized (nonconserved models [9,10,23. Our results also
[5], the forest fire model[6] and the Olami-Feder- 9ive exact value_s_ of critical exponents, a scaling relation, and
Christenser(OFC) earthquake moddl7]. a bound of a critical exponent. _
However, there has been only a phenomelogical definition The paper is organized as follows. In Sec. II, we give a
of SOC and then the conditions necessary for SOC are stiprecise definition of the nonconservative Abelian sandpile
unclear. One of the approaches to solve this problem is t§10dels. In Sec. lll, the calculations of the average number of
study the robustness of SOC by generalizing the rules of thioPplings in an avalanche and the height correlation will be
models, in which the emergence of SOC has been estal§iven. Concluding remarks are given in Sec. IV.
lished for their original versions. Since cellular automaton
models are suitable to computer simulation rather than to . NONCONSERVATIVE ABELIAN SANDPILE MODEL
analytic calculations, the study of this line has been done ) ) ]
mainly by numerical simulationf8—14]. As explained be- Consider arL XL regionA on a square lattice. To each
low, here we will concentrate on the reports of computersite x=(x,y) e A, , a variablez(x) e Z*={1,2,3; - -} is as-
simulations[9,10] that showed the breaking of SOC in the signed, which is the number of sand grains>oWe define
BTW model as soon as the rule is generalized so that thg yhreshold valuez, and a configuration is stable #(x)
conservation of particle numbers is not satisfied even in t0p= ; 5t gl sites and otherwise it is unstable. An initial con-
pling apart from boundaries. figuration is a random stable configuration, and time-

Almost all of the exactly solved models exhibiting SOC, ¢\5|ytion rules consist of the following two rule$) Adding
which are defined on regular lattices with short-range inter- . = -
actions, may fall into only one class called the Abelian sand® par;ucle ata ra”dom'Y cho§en9 ske corresponds ta(x) .
pile models(ASM) of Dhar[15—24. Although Mannaet al. ~ —Z(X) +1, and otherz(y)'s (y#Xx) are unchanged. In this
[9] and Ghaffariet al. [10] did not take care of the Abelian Procedure, the probability of choosing one site is not neces-
property when they introduced their models, we have foundarily equal. For simplicity, however, we assume that each
that we can define nonconservative sandpile models similafite is chosen with equal probability from now di) If any

to those that are Abelian and then can be solved exactly. 1a(x) >z, thenz(y)—z(y) —A(X,y) for all y. whereA(X,y)
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is the &)7) element ofthe rule matrixA. This process rep-

resents a toppling at. In our sandpile model we define the
rule matrix as

1 N
<T>L=FE > G(xy)

XxeAL yeAL

1

. - == 2 2 [ATxy). (4)
4a§ if X=Yy L xeAL yeAL
A(;&): —¢ if |>Z—)7|:1 @ Consider a discrete versiak, of the Laplacian operator
0 otherwise, A=2i:1&2/axi,
2
for x,ye A, andA(X,y)=0 forxe& A, orye A, . This rule Arf(x)zﬂzl [f(x+e,)+f(x—e,)-2f(x)], (5

means that at a toppling o 4a{ particles drop fronx and ) )

{ particles fall onto each of nearest-neighbor sites. When wheree; ande, are the basis vectors of the square lattice.

>1(a<1), 4a—1|{ particles are annihilate@reatedin a  Equation(3), in which x andy are replaced by Gand x,

toppling. Without loss of generality, we can assume respectively, can be written as

=4af. We impose the open boundary condition so that if R .

topplings occur at a corner or an edge/qf, particles drop- [A—1?]G(X)=— 854, (6)

ping outside ofA | leave the system. Topplings must be con- . . R

tinued until the configuration becomes stable again, and thifor G(x)=G(0,x)/¢ with u?>=4(a—1). If a>1, G(x) is

series of topplings is called an avalanche. After an avathe analog of the massive propagator in particle physics.

lanche, return to the perturbatidi. We find that the Green function of the two-dimensional sta-
In this paper, we restrict the cases that particles annihilatonary Klein-Gordon equation[ A — u?]G,(r) = — &(r),

in a toppling @>1). It must be noted that{ and mustbe r= VC+y?, is given as Go(r)=(i/4)H{M(iur) using

integers, since we have assumed)  Z*. Howevera can  the Hankel fgnctiorj of the second kind. Sin@g(r) gives

be chosen any rational number if one chogs® thata is ~ the _two-dimensional ~ Yukawa  potential Gy(r)

an integer. We can then treat the cases in which the ratio of (2v27) " *e™#'/r¥2for r>1, Eq.(6) implies that for any

particle annihilation in a toppling is very small; for example, «>1 the Green function of the present sandpile model

a«=1.0001. Such cases are difficult to study by computeshows the exponential decay and the system is out of criti-

simulations. cality. Rigorous arguments proving this simple observation
Let C be a stable configuration and define an operagor Will be given in the following sections.

so thatayC is the stable configuration that is reached through

an avalanche due to a perturbationiaﬂt can be seen that
the operators{ay} are exchangeablday,a;]=0. Those A. Exact calculations of(T)
models having such property are called A$M]. For gen-

eral Abelian sandpile models, Dhar proved that stable cong q
figurations are divided in two classeslowedandforbidden ., easily obtaild ~! asPA P~ 1. We found that the rule
conflguratlong._ T_he aIIoweq configurations come out W'.thmatrix can be diagonalized by the Fourier transformation of
equal probability in the stationary state, although the forbid-- -
den configurations never do. It is proved that the number ok~ (X1,X2) o n=(ny,ny) as

IIl. ANALYTICAL CALCULATIONS

For obtaining(T), by Eq.(4), we must calculates ~ . If
can diagonalizé\ with a matrixP asA=P AP, we

allowed configuration®g is generally given by o 2 [xny [ Xoh, ,
(n,X)—mSIH m’ﬂ SN mﬁ . ( )
Ng=detA. 2
R @ Then we obtain that the diagonalized matiixis
- .. X X
The Green functiorG(x,y) of the sandpile models was A(x,y)=2§{2a—cos(ﬁ77 —cos(LTzlw ]5);&,
defined by Dhar as the average number of topplingf:s it @)
the avalanche due to a perturbatiox awhich is the solution .
of the equation Using Eqgs.(7) and(8), G(x,y) can be written as
TRy — 5 S
e e e - XY)=———""3
> G(XY)A(y,2)=6;; for xeA_ ©) J(L+1)2n=1mp=1
el
et n;X nyy
o i i COSTF1™) "N +1™
with the boundary conditio®(x,y)=0 if xe A orye& A, . X e > 9
Here 65 ;=1 if x=z and 0% ;=0 otherwise. The average Za—CO{mTF)— 05{m77

number of topplings in an avalanche in the steady staje
is then given as Then,
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[ MXy [ N2Xa [ N1y1 [ N2Y2
L sin| | sin| | sin| e sing e
T - @ @@
(T JLA(L+1)2 ninpxi Xpy1.y2=1 2a—co M1 7| —co M2 T
L+1 L+1
nl7T n27T
2 - COIZ(z(LH))COIZ(z(LH))

- > : (10)

§L2(L+1)2 ny,np=1:ny,n,e{odd B nym _ nom
2a—Coq (7)Y 11
|
We can take the infinite-volume limit fT), and obtain Consider a lattice with two separated si@sndO’ and
1 an allowed configuratio@ with z(O)=z(0’)=1 on it. As
(T)y=lim(T) =75——< fora>1. (11  shown in Fig. 1 we assume thst W, SandE (N', W', §,

4{(a—1)

L—oo

andE’) are the nearest-neighbor sites@f(Q’). It is con-

Thus we can conclude the avalanche has a characteristic tint+'ded fro_m the b_urning _algorit_hm that the height of a site
scale(T) and criticality of the system is destroyed for any Whose adjacent site having height 1 must be larger than
a>1. It should be noted th4fr), which is the spatial sum- Then we can construct a configuratifd' } by reducing the

mation of G(x,y) as in Eq.(4), will show a power-law di- heights aN, W, S, N’, W', andS’ by ¢. It should be noted
vergence as— 1 with an exponent 1. It is the analog of the that for any allowed configuratio@ with z(0)=z(0')=1
susceptibility and the specific heat that are the spatial sumwe have a unique configurati@h by this procedure and we
mations of the spin-spin and the energy-energy correlationsan make two sets of configuratiof@} and{C’} that have
and exhibit the divergence as the temperature goes to iisne-to-one correspondence to each other.
critical value in the usual second-order phase transition of It is convenient to put aink siteout of the lattice and
spin systems. connect each site in the lattice and the sink site by an addi-
Ghaffariet al. found numericallyf 10] that the distribution  tional bond. We interpret annihilation of particles in a top-
of T behaves likeP(T)~ T~ 2exd —(T/To)°], whereTo~ (« pling as a process in which the particles fall into the sink site
—1)2¥. Combining this assumption with the definition through the additional bond between the toppling site and the
(TYy=[TP(T)dT gives (T)~(a—1)"2"@"3I'[(2—a)/b], sink site. Particles into the sink site are absorbed and never
whereI'(x) is the gamma function. Our resultO) gives a  return to the lattice sites. In this system, in a topplingat

scaling relation 4al particles drop fromx, and then¢ particles fall into
every nearest-neighbor site and-{ 1) particles into the
sink site. Next we remove the six bonddN, OW, OS,

It is remarkable that the numerical fitting of the data reportedd’N’, O’W’, O'S’, and two bonds connecting, O’ and
by Ghaffariet al. gives v=1/2 anda=1, which are consis- the sink site. The remaining latti¢eee Fig. 1is denoted by

2v(2—a)=1. (12

tent with Eq.(12). A/ instead of the original latticd, . Now consider our non-
conservative ASM on\| , with a slight modification of top-
B. Analytical estimation of the 1-1 height correlation pling rules. Since particles cannot flow along the removed

We study here the 1-1 height correlatiBgy(r) by apply- tionds, we revise the threshold valueshfN, W, S, E, O,

ing the method used by Majumdar and Dhar for the BTWN', W', ', andE’ as

model[17]. For preparation, we must go through théning - —
algorithm [16—1§ that determines whether a given stable z(0)=2,(0")=1,
configuration is allowed or not. The procedure of the burning

algorithm is the following. For a given configuration, choose N’

a site X at random and test whether the inequalitx)
>3,A(y,x) is satisfied or not. The right-hand quantity cor- W"/'—'E'

responds to the sum of numbers of particles falling iio .

topplings at other site‘§. If the inequality is satisfied, then N / s’
we remove the sitex from the lattice(the site is burned

Continue the test and the removing processes over all sites W 0.4_];
until there is no site to be removed. At this time, if the

system becomes empty then the initial configuration is al-
lowed, while if there remain unburned sites on the lattice the

configuration is forbidden. FIG. 1. A latticeA| obtained by removing six bonds fror, .

N
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zC(N)=zC(W)=zC(§) whe[el} is the 1})< 10ﬂunﬁit matrix. The elements &; such
. . . as (0,0'), (O,N"), (O,W"), and so forth are zero, and we
=7.(N")=2,(W")=2,S)=4al—- ¢, have
= = -), = —_ —_ Bll 0
z(E)=2z(E")=4a{—({-1). (13 B, = (18)
1 0 B;,Ll ’
The new rule matrixA’ can be written using a modifying
matrix B as whereB,; and B, are 55 matrices. The form of3; is,
accordingly,
A'=A+B, (14
N Gll GlZ
whereB(x,y)=0 except for G;= G Gl (19
12 11

whereGq,, Gi,, andGj, are 5<5 matrices. Note that the
elements oB,; andG,; (B;; andG;,) depend only on the
location of O (O') and are independent of the distance be-
tweenO and O’ although those 06, depend on the loca-

tions of both ofO andO’.
It can be seen that what we must calculate to determine

the elements oBl andG; are G(P+ oel pe2 P'+o’ el

=B(N,0)=B(W,0)=B(5,0)=¢, +p'e,), where P and P’ are O or O’ and a,p,0',p’
o o e{—1,0,1}, whereG(x,y) is the Green function given by
B(O,E)=B(E,0)=¢—1, (15  Eq. (9). Now we fix O at the center of the latticé[ (L

. . . . +1)/2,(L+1)/2]), and O’ =O+xe;+ye, with —L/2<X,
and Ior other eIemerJts obtained*by replacdg N, W, S, y<L/2. Letr=x?+yZ and take theL—c limit, then we
andE in Eq. (15 by O’, N’, W', §', andE’, respectively. have
By the definitions ofA| andA’, the set of allowed configu-

rations of this modified ASM on\| is equal to the seftC’}, G(r)=1limG(0,0")

which is constructed from the set of allowed configurations L—e

{C} for the originel ASM onA, as mentioned above. This 1 COgX0;)Cogy6,)

fact can be confirmed by demonstrating the burning algo- — dé’l d 0, 1 2

rithm. LetX;,X», . .. X, be the sequence of the burned sites 2¢m? 2a—c0g6,) —cog )

in the algorithm under the ruld for C with z(é)zz(é’) (20)
=1, then we see tha’' passes the burning algorithm under

the rule A’ with the same sequencél,iz, o ’;n This Define the truncated correlation functi@y(r) as
one-to-one correspondence concludes that the number of al- . 2 2, 2 =,

lowed configurations witte(O)=z(0’)=1 is equal to the Cll(r)=LI|an[P11(O,O )=PUO)PL(OT] (2
total number of allowed configurations of the ASM undér

onA[. where P;(O)[P,(0’)] is the probability that the height at

Define P11(55,6’) to be the probability that the configu- G(G’) is one in the steady state. By Ed.7) and the prop-
ration with z(O)=z(0O’)=1 appears in the stationary state erties of matrices5; and B, explained, we can conclude
of the nonconservative ASM with the rule matdx Com-  C,,(r) decays a$s?(r).

bining the equiprobability property of allowed configurations  As shown in the Appendix, we found an upper bound of
and Dhar’s formula2) with the above consideration gives |(~3(r)| as

- -, detA’ ~ e 1/2,
P11(0,0)= o1 (16) |G(r)| <constx _— (22)

Substituting Eq(14) into Eq. (16) givesP,,(0,0')=defl  where
+GB] with an L2x L? matrix G, wherel is a unit matrix.

Since the elements @ are zero except the rows and col- 1

umns labeled b, N, W, S, E, O’, N’, W, S/, andE’, g“_\/§|n{a+l_\/EM}' 23

we need to calculate the determinant of only the<10

matrix. As explained below, we can define thexlID ma- Thus we therefore conclude th@t,(r) decays with re-
tricesB, andG; so that spect tor faster thare™"/¢w/r2. This means thaE ,(r) is not

R algebraic but exponential, and the upper bound of the corre-
P.1(0O,0")=defl;+G,B4], (17) lation length is given by,. Note that¢, diverges asx—1.
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It should be remarked that the=1 limit of the present
ASM is the BTW model, and Majumdar and Dhdr7] es-
tablished thatCy(r)~r 29 for the d-dimensional BTW
models. The power-law divergence §f of C4(r), &,~|a
—1|"Y2 for =1, implies that the correlation length of
Cy4(r) will also diverge asé~|a—1|""11 asa—1 in the
nonconservative ASM. Our resulg2) and(23) give an up-
per bound of the correlation length exponentiag< 1/2.
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The present exact results show that ~(a—1)"?* for
any a>1 and é<é&,~|a—1|"Y? for 0<a—1<1. The
power-law divergence asg—1 supports the picture that
SOC of the BTW model can be considered as a critical phe-
nomenon at the critical point=1 of the present generalized
(nonconservativeAbelian sandpile moddl9,10,25.

In conclusion we should remark that it is still an open
problem for the non-Abelian sandpile models whether or not

We note that the mean-field theory of Vespignani and Zapthe conservation of particles in toppling is necessary for the
peri gives the height correlation length exponent as 1/2 foSOC. In the present study, we add a particle at a randomly

all nonconservative sandpile mod¢ks.

IV. CONCLUDING REMARKS

chosen sitdrandom drive. Ghaffariet al.[10] claimed that

the establishment of SOC depends on how to give perturba-
tion to the system as well as on the method of toppliag.,
Abelian or non-Abeliah They reported that in a nonconser-

~ In the present paper we have introduced a nonconservgative and non-Abelian model, which they called the Zhang
tive Abelian sandpile model on dnx L square lattice with a  model[14] but the method of toppling of which is identical

parametera>1, in which at a fraction ¢ —1)/«a particles

to the OFC earthquake modél], uniform driveis necessary

are annihilated in each toppling process. An exact expressigfhut not sufficient for SOC. It is noted that their study de-
for the average number of toppling in an avalanche in thgyends on numerical simulations and approximate renormal-

steady statéT), is obtained for an arbitrary size of systém
and it is shown thafT) =lim _,..(T) < foranya>1. We

ization group analysis and it is a challenging future problem
to obtain exact and/or rigorous results for non-Abelian mod-

have also calculated the 1-1 height correlation functiorgls.

C44(r) and proved that for ang>1 the correlation lengtl§
is finite andC44(r) decays exponentially for large Since

APPENDIX: BOUNDS OF G(r)

(T) and¢ are the temporal and spatial characteristic scales of _ _ . _
the extension of avalanches, we can conclude that the criti- We can immediately perform one of the two integrations

cality is lost whena>1. In the limit «@—1, on the other

hand, our model is reduced to be the BTW model, for which
Dhar[16] proved(T)~L2?— asL—o and Majumdar and

Dhar [17] showedCq(r)~r~% for r>1. It is then con-

of Eq. (20) by the formula

fﬂ cosad do— (A—VA—-1JA+1)? (A1)
oA—cost " JA+IJA-1

cluded that the conservation of particles in the toppling in the

bulk of the system is necessary for SOC.

ThenG(r) reduces to

(2a—cosf;— V2a—cosf;+1—\2a—cosh;—1)Y

1 T
G r)=—f d#,cosxé , (A2)
( 2{mo t ! V2a—cosf;+1\2a—cosf;— 1
|
wherer = \/x2+y2. kar\ [(k+1/2)m
It may be convenient to change the variallefor ¢/x, <9 > fo cosfdé
and then divide the intervdl0x7] into x parts as follows.
We assume that is even, k+1 (k+1)7
+gl—m f cosfdd if k iseven
x—1 X (k+1/2)m
G ! f o id d A3
(r)_2§7rx & cospg| L |dd,  (A3) (A5)
and
where
kar\ [(k+1/2)m k+1 (k+1)m
) (2a—coS¢p— \2a—cos¢p— 1\2a—cos¢p+1)Y 9|+ J cos@do+g| — 7 f(k ) coséd o
= . 0 +1/2)m
J V2a—cos¢p—1\2a—cosp+1
A4 (k+1)m 0
(Ad) <J cosag(;)de
kar
Note thatg(¢) is a decreasing function @f in each interval
[k, (k+1)7]. It follows that 2k+1 (k+1)m ] .
<g o T cogA)de if k isodd. (A6)
kar

g

2k+1 (k+1)m (k+1)m 0
T f cosﬁd0<f cosfg| —|déo
2X kar kar X

Substituting Eqs(A5) and (A6) into Eq. (A3) gives
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Gi(N)<G(r)<Gy(r), (A7) ~ 1 (a+1—\2a\2a—2)
Gi(r)>— 207X , (A9)
with ™ V2aN\2a—2
(x—2)/2 . .
&.(1)= 1 > 2mm|  [2m+1 - where we used the following equalities:
u 2{mX 7o 97X 97X ’
x/2
2m+1 1
~ 1 & 2mmxr 2m-1 > [coé(—w) cod T ]=—[1—(—1)']
= — . — 2 !
Gi(r) 207X mz=0[g( X ) g( x ] (A8) m X
Sinceg(x) depends ox through cog, one can expand(x) (x—2)12 >
. - m m—1
with respect to cos. The summations of(x) are replaced > (COé(—w) Cog( )): “[(-1)'-1].
to the summations of clf#), | € Z. Then we arrive at m=0 X (A10)
&) 1 (a+1—+2a\2a—2)Y
r < 1 .
! 2{mX V2a2a—2 Then the bound$§A7) give Eq.(22).
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